

CATALYSIS

Catalysis Today 42 (1998) 51-60

NO decomposition over sodium-promoted cobalt oxide

P.W. Park^a, J.K. Kil^{1,a}, H.H. Kung^{a,b}, M.C. Kung^{a,b,*}

^aCenter for Catalysis and Surface Science, Northwestern University, Evanston, IL 60208, USA ^bDepartment of Chemical Engineering, Northwestern University, Evanston, IL 60208, USA

Abstract

The catalytic decomposition of NO over cobalt oxide was significantly enhanced by the addition of alkali promoters. The promotional effect was the highest with Na and the optimal Na/Co atomic ratio was 0.015. The reaction rate increased with increasing temperature up to 650°C. At 550°C, the rate measured at low conversions for the most active catalyst was 0.28 µmol N₂/g s. In contrast, very low decomposition rate was observed when Na was added to ZrO₂. This suggests that both Na⁺ and Co₃O₄ are necessary for the high NO decomposition activity. In ¹⁵NO temperature programmed desorption, the presence of Na in the sample resulted in the appearance of desorption peaks of NO, O2 and N2 at temperatures higher than 450°C. X-ray diffraction of a post-reaction sample detected a NaNO₃ phase. It was proposed that the presence of Na facilitated the desorption of oxygen from Co³⁺ to form Co²⁺ via the formation and decomposition of NaNO₃, and Co²⁺ was the active site for NO decomposition. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: NO decomposition; Co₃O₄; Na promotion; TPD; XRD

Introduction

Direct catalytic decomposition of NO is the most attractive as well as the most challenging NO_x abatement process. A large number of metal oxides [1,2] have been examined for NO decomposition, but none has an activity that approaches practical application. In many of the studies, kinetic measurements [1–3] indicate that oxygen suppression plays an important role in the catalytic activity. In particular, for Co₃O₄, Amirnazmi et al. [3] found that the kinetics follows the equation:

Rate =
$$k[NO]/(1 + K[O_2]),$$
 (1)

where k is the rate constant for NO decomposition and

K is the equilibrium constant for O_2 adsorption. For the more active catalysts, such as Co₃O₄, CuO and MnO₂, the ΔH of vaporization of O₂ is relatively low, between 75 and 85 kJ/mol [4].

In recent years, new catalysts have been discovered that have much higher activities than the simple metal oxides. The most notable example is the Cu-ZSM-5 catalyst [5]. It has been suggested that the active site responsible for the high catalytic activity is an unique dimeric Cu which is stabilized by the zeolitic framework [6-8]. Adsorption of NO on this dimeric species to form a cuprous hyponitrite that decomposes to form N₂ is proposed to be a possible reaction mechanism [9]. Xie et al. [10] have reported high activities on Ba/ MgO. NO decomposes on barium oxide via a bariumnitro phase that subsequently decomposes to N₂ and O₂. Chuang and Tan [11] have observed that the formation of a Tb-nitrate intermediate may be impor-

^{*}Corresponding author.

¹On leave from Hyundai Motor Co., Korea.

tant in NO decomposition over Tb promoted Pt catalyst.

 Co_3O_4 is one of the most active, single component, metal oxides for NO decomposition [12]. Its activity can be enhanced by addition of Ag, presumably by modifying the extent of oxygen suppression [13]. Thus, it might be possible to further improve the catalytic activity of Co_3O_4 using other promoters. In this paper, we report on the modification of Co_3O_4 by alkali metals ions, in particular Na. Results of catalyst characterization by temperature programmed desorption (TPD) and X-ray diffraction (XRD) are reported, and a proposed scheme for the promotional effect is described.

2. Experimental

2.1. Catalyst preparation

Cobalt oxide was prepared by precipitation of Co(NO₃)₂·6H₂O (Aldrich, 98+%) as the hydroxy carbonate with Na₂CO₃ (Fisher Scientific, certified ACS). For the Cs promoted sample, Cs₂CO₃ (Aldrich, 99%) was the precipitation agent. The precipitate was thoroughly washed with deionized water, dried in air at 100°C for 24 h and subsequently calcined in air at 400°C for 4 h before the introduction of promoters. The residual Na content in the parent Co₃O₄ was 0.1 wt%. Alkali metals were introduced in the form of nitrate or carbonate to the Co₃O₄ by incipient wetness impregnation. The alkali metal M/Co atomic ratio varied from 0 to 0.091 in the M/Co₃O₄ series of catalysts and the catalysts were labeled "M(#)" where M is the alkali metal and # is the M/Co atomic ratio. The promoted and parent Co₃O₄ were calcined in air at 575°C for 16 h. One sample of Na(0.030) was also calcined at 700°C. ZrO₂ was prepared by precipitating the nitrate salt of Zr (Aldrich Chemical 99.99% ZrO(NO₃)₂) with urea at about 100°C. It was calcined at 575°C for 6 h before the introduction of Na. It was subsequently calcined at 575°C for 12 h.

2.2. Catalyst characterization

BET surface area measurements were performed using an Omnisorp 360 automatic system (Omicron

Technology). X-ray powder diffraction patterns were obtained with a Scintag XDS 2000 employing Cu K_o radiation and a solid state detector. Desorbed species in TPD of NO from Na(0.015) and Co₃O₄ were detected with a quadrupole mass spectrometer (UTI 100 C). Prior to the TPD experiment, 0.1 g of the catalyst, after use in NO decomposition reaction, was pretreated in a 100 cm³/min flow of 10% O₂/He at 550°C for 1 h. It was then purged in He for 30 min and subsequently cooled in He to the adsorption temperature. ¹⁵NO was used to avoid interference from the background gases present in the TPD system. The temperature of the sample was increased up to 600°C at a rate of 20°C/min. O₂ TPD experiment was performed using a HP 6890 gas chromatograph. After pretreatment at 550°C and cooled down to room temperature in 10% O₂/He, the reactor was purged with He for 1 h. Then the temperature was raised at a rate of 10°C/min. The ultra high purity He stream used in the desorption experiment was purified by passing through a trap filled with molecular sieve and calcium sulfate to remove water. It was then passed over manganese oxide supported on silica to remove trace amounts of O₂. The 10% O₂/He gas stream was passed through the molecular sieve-calcium sulfate trap to remove H₂O.

2.3. NO decomposition activity

Measurement of the NO decomposition activity was performed in a flow microreactor. The reactor was heated by a tube furnace with the temperature being controlled within 1°C by a K-type thermocouple and an Omega CN 2010 temperature controller. The reactant gas flow rates were controlled with Brooks 5850 mass flow controllers. The product gases were analyzed with a HP 6890 gas chromatograph equipped with a 4 ft. molecular sieve and a 6 ft. Porapak O column. The NO decomposition reaction was investigated with a 0.976% NO/He gas mixture (Matheson, >99.99%) at a constant flow rate of 30 cm³/min. In a reaction run, 1 g of catalyst was heated in the reaction feed from room temperature to 450°C and the first data point at 450°C was recorded 3 h after the start of heating. All activity measurements were obtained under steady-state conditions. NO conversion was calculated based on the N₂ product. No byproduct, such as N2O, was observed. No reaction was observed

when an empty reactor was tested up to 700°C with the reaction feed.

3. Results

3.1. NO decomposition over Na promoted Co₃ O₄

In the preliminary experiments, the NO decomposition activity of Co_3O_4 was observed to vary significantly for different preparations. Subsequently, this variation was correlated with the concentration of residual Na in the sample. Impregnation of thoroughly washed samples with Na showed that the rate of NO decomposition was indeed dependent on the Na/Co atomic ratio (Fig. 1), with the highest rate observed at a Na/Co atomic ratio of 0.015.

The dependence of the activity on time on stream at three temperatures is shown in Fig. 2 for sample Na(0.015) calcined at 575°C. Between 450°C and 550°C, the catalyst quickly reached a steady state with each change in temperature. After prolonged testing at 550°C, the reaction rate reexamined at

10 (%) uoisuavuo)

Integral Reaction Rate (μmolN₂g⁻¹s⁻¹x10²)

Na/Co Atomic Ratio (x100)

Fig. 1. NO decomposition activity over Na(0.015) catalyst as a function of Na content at 550° C.

500°C remained unchanged. Thus, there was no evidence of deactivation.

At temperatures where steady state was attained, O_2 was always detected, albeit at a lower value than N_2 . The lower value of O_2 was due to the reaction of O_2 with NO in the chromatography column and the extent of this reaction was more severe at lower NO conversions. For example, at a conversion of 10.8% the O_2/N_2 ratio was only about 0.09, but increased to 0.57 at a conversion of 51.6%.

Fig. 3 shows the temperature dependence of the decomposition activity for a 700°C calcined sample. The surface area of this sample (8 m²/g) was lower than the 575°C calcined one (24 m²/g), but its areal activity (that is, activity/m²) was higher. In this experiment, steady-state activity was obtained in ascending temperature up to 650°C. At 700°C, a 3.7% decrease in N_2 yield was observed after 1.5 h of testing. But when the sample was cooled to 600°C and 500°C, there was no discernible change in activity from the earlier measurements. The ratios of O_2/N_2 detected at 650°C and 700°C were 0.85 and 0.88, respectively.

Fig. 2. NO decomposition activity over Na(0.015) catalyst as a function of time on stream.

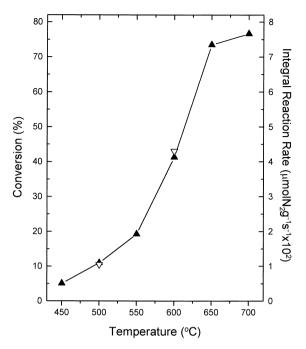


Fig. 3. NO decomposition activity over Na(0.030) calcined at 700° C for 16 h as a function of reaction temperature: (\blacktriangle) ascending temperature and (\bigtriangledown) descending temperature.

3.2. Differential NO decomposition rates over Co₃ O₄ and Na/Co₃ O₄

Differential reaction rates were calculated using data of <3.3% conversion. Table 1 compares these

rates over Co_3O_4 and Na(0.015) catalysts with the reported values for other cobalt oxide catalysts as well as that for Cu-ZSM-5 [14]. The literature values tabulated by Yamashita and Vannice [14] were extrapolated to our reaction condition of 0.962% NO by assuming a first order dependence on NO concentration. The reaction rates for Co_3O_4 and Na(0.015) were 0.014 and 0.28 μ mol N_2/g s, respectively.

3.3. Alkali metal promoted Co₃ O₄

Promotional effect in NO decomposition was also observed with other alkali metals (Fig. 4). In this series of experiments, the M/Co atomic ratio was 0.015. Except for Li, this value was close to the optimal ratio for all alkali metals. The promotional effect varied for different metals, with Li being the most ineffective. For Li, the NO decomposition rate increased with Li loading up to a Li/Co ratio of 0.075, beyond which there was little change.

3.4. Catalyst characterization

Extensive characterization of the catalysts were performed in order to understand the differences in catalytic activity with different alkali metals as well as with changes in metal loadings. Table 2 lists the BET surface areas of the different catalysts. With the exception of Li, the addition of a small amount of alkali metals impeded the sintering of Co_3O_4 , and the

Table 1 NO decomposition activity over oxide catalysts

Catalyst	Temperature (°C)	Activity		References ^d
		$10^{-4}\mu\text{mol}\ N_2/g\ s$	$10^{-5} \mu mol N_2/m^2 s$	
Co ₃ O ₄	500	63	77	[21]
Co ₃ O ₄	500	100	_	[13]
AgCo ₃ O ₄	500	500	_	[13]
Cu-ZSM-5	500	29 000	_	[16]
Co ₃ O ₄	600	_	240	[3]
Co ₃ O ₄ ^a	550	140	100	This study
Na(0.015) ^b	550	2800	1400	This study
Na(0.015)/ZrO ₂ ^c	600	8	3	This study
Na(1.07)/ZrO ₂ ^c	600	5	11	This study

^aReaction rate determined at 2.1% conversion using 0.96% NO, 200 cm³/min and 1 g sample.

^bReaction rate determined at 3.3% conversion using 0.96% NO, 150 cm³/min and 0.058 g sample.

^cReaction rate determined at <1% conversion using 0.96% NO, 30 cm³/min and 1 g sample.

dReaction rates obtained from Table 4 in [14]. Data extrapolated to 0.96% NO by using first order dependence for NO.

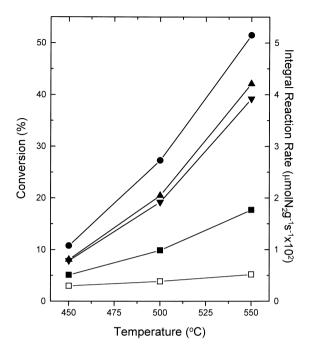


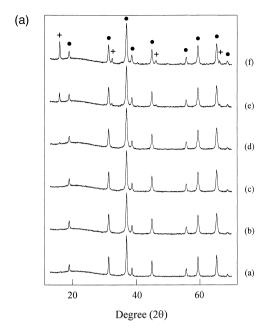
Fig. 4. NO decomposition activity over alkali metal promoted Co_3O_4 catalysts (M/Co atomic ratio=0.015): (\spadesuit) Na, (\spadesuit) K, (\blacktriangledown) Cs, (\blacksquare) Li and (\square) Co_3O_4 .

surface area stabilization increased with the size of the alkali metal. The XRD patterns of Na/Co₃O₄ before and after reaction are shown in Fig. 5(a) and (b), respectively. XRD patterns of fresh catalysts with

Na/Co \leq 0.015 showed only lines characteristic of Co₃O₄. For samples with Na/Co \geq 0.03, peaks characteristic of β -Na_{0.6}CoO₂ were observed. The intensities of the β -Na_{0.6}CoO₂ peaks increased with increasing Na content. In addition, NaNO₃ peaks were detected in the post reaction catalysts with Na/Co \geq 0.03.

3.5. Temperature programmed desorption

TPD of O_2 and NO were performed to better understand their roles in the decomposition process. Fig. 6 shows the oxygen desorption profiles for Co_3O_4 and the different Na/Co_3O_4 catalysts. The total amount of O_2 desorbed and the amount of O_2 desorbed at the temperatures of interest (between $400^{\circ}C$ and $600^{\circ}C$) all increased with Na loading.


The desorption profiles for room temperature adsorption of 15 NO on Co_3O_4 and Na(0.015) catalysts are shown in Fig. 7(a) and (b). For the Co_3O_4 sample, the gas phase species detected were 15 NO, $^{15}\text{N}_2$ and O_2 . The 15 NO desorption peak, with a shoulder around 160 °C and a peak at 250 °C, was very broad. Low levels of N_2 were detected over a wide range of temperatures; the highest concentration detected was between 250 °C and 350 °C. 20 0 desorption showed a peak at 350 °C. Above 450 °C, 20 0 desorption increased with increasing temperature.

For the Na(0.015) sample, $^{\bar{1}5}$ NO and $^{15}N_2$ and O_2 were also the desorption products from room tem-

Table 2 BET surface area of M/Co₃O₄ and Na/ZrO₂ catalysts

Catalyst	wt% M	Calcination temperature (°C)	Surface area (m ² /g)	
			Fresh	Used
Co ₃ O ₄	_	575	14	14
Na(0.0075)	0.22	575	30	28
Na(0.015)	0.43	575	27	20
Na(0.030)	0.86	575	32	24
Na(0.030)	0.86	700	8	8
Na(0.061)	1.7	575	32	19
Na(0.091)	2.5	575	23	15
Li(0.015)	0.13	575	14	14
K(0.015)	0.73	575	30	31
Cs(0.015)	2.45	575	51	44
Na(0.015)/ZrO ₂ ^a	0.29	575	_	30
$Na(1.07)/ZrO_2^a$	20	575	_	5

^aNumbers are Na/Zr atomic ratio.

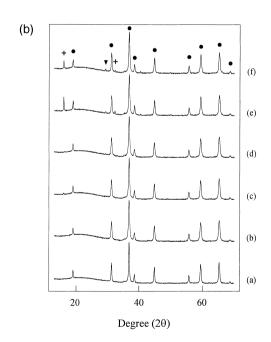


Fig. 5. (a) XRD patterns of fresh Na/Co₃O₄ catalysts (a) Na(0), (b) Na(0.0075), (c) Na(0.015), (d) Na(0.030), (e) Na(0.061) and (f) Na(0.091); () Co₃O₄ and (+) β -Na_{0.6}CoO₂. (b) XRD patterns of post reaction Na/Co₃O₄ catalysts (a) Na(0), (b) Na(0.0075), (c) Na(0.015), (d) Na(0.030), (e) Na(0.061) and (f) Na(0.091); () Co₃O₄, (+) β -Na_{0.6}CoO₂ and (∇) NaNO₃.

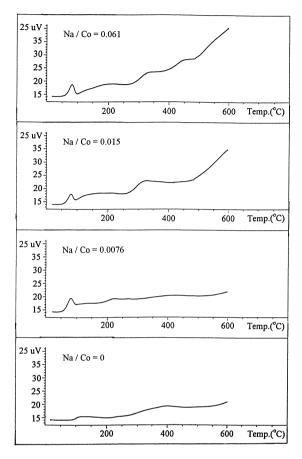


Fig. 6. O₂ TPD profiles for Na/Co₃O₄ catalysts.

perature adsorption of NO (Fig. 7(b)). Compared to the desorption profile of Co_3O_4 , the 350°C O_2 peak disappeared and a new one appeared at 540°C. New ^{15}NO and $^{15}\text{N}_2$ desorption peaks also appeared at 575°C and about 600°C, respectively. Thus, these desorption peaks were associated with the presence of Na. The NO adsorption process appeared to be an activated one. Adsorption of ^{15}NO at 350°C instead of room temperature resulted in $^{15}\text{N}_2$, ^{15}NO and O_2 desorption peaks about twice as intense as those from room temperature adsorption (Fig. 7(b) and (c)).

3.6. NO decomposition over Na/ZrO₂

 Na/ZrO_2 samples were not active for NO decomposition. Two Na/ZrO_2 samples with Na/Zr atomic

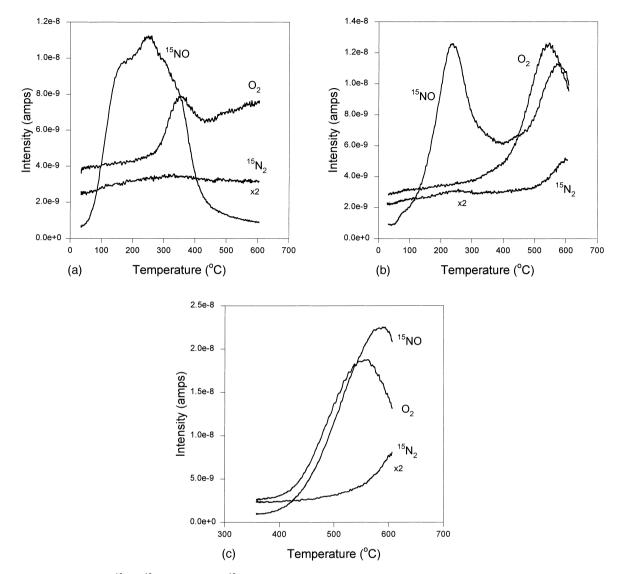


Fig. 7. TPD profiles of ^{15}NO , $^{15}N_2$, and O_2 from ^{15}NO adsorption at room temperature for (a) Co_3O_4 and (b) Na(0.015), and adsorption at 350°C for (c) Na(0.015).

ratios of 0.015 and 1.07 were tested up to 600° C. ZrO_2 was used as a support for Na as it is chemically more inert than Al_2O_3 and SiO_2 [15]. The XRD pattern of Na/ZrO₂ showed a major phase of monoclinic zirconia and a minor phase of tetragonal zirconia. No Na₂ZrO₃ compound was detected. The decomposition rates were very low (Table 1). On the per gram basis, the rate of Na/Zr(0.015) at 600° C was 350 times lower than that of Na(0.015) and 18 times lower than that of Co₃O₄ measured at 550° C.

Table 3 Integral NO and NO_2 decomposition reaction rates over Na(0.015) catalyst

Temperature (°C)	Decomposition activity ^a (10 ⁻⁴ μmol N ₂ /g s)	
	NO	NO ₂
450	108	14
500	273	90
550	515	310

 $^{^{\}rm a}Reaction$ rate obtained at 0.976% NO or 1% NO $_2$ with 30 ${\rm cm}^3/{\rm min}$ and 1 g sample.

3.7. NO_2 decomposition over Na(0.015)

Table 3 compares the NO and NO_2 decomposition activities over Na(0.015) catalyst. The NO_2 decomposition rate was always lower than the NO decomposition rate. The difference was more pronounced at the lower temperatures.

4. Discussion

The high NO decomposition activity, resulted from the addition of Na, is indeed catalytic as evidenced by the sustained activity over time. In the experiment depicted in Fig. 3, 5.2×10^{-3} mol of oxygen atoms would have been formed from NO decomposition, which is equivalent to 120% of the total Co²⁺ in the sample $(4.2 \times 10^{-3} \text{ mol})$. Since there was no detectable structural change by XRD after reaction, it can be concluded that stoichiometric reaction cannot be the primary source of N₂ production. The deviation of O₂/ N₂ ratio from unity was due to the reaction of NO and O_2 in the chromatography column. The O_2/N_2 ratio increased with increasing NO conversion, and the highest ratio being 0.88 at a NO conversion of 76.7%. This phenomenon has been well documented by other workers [16].

A comparison of the Na(0.015) catalyst with Co_3O_4 (Table 1) shows that the addition of only 0.43 wt% Na is sufficient to cause a 20-fold increase in activity. The NO decomposition rate of 0.28 μ mol/g s is only 10 times lower than that of Cu-ZSM-5, the most active catalyst reported to date. This activity is higher than any metal oxide catalysts reported. The activity of the Co_3O_4 used here (with a residual Na content of 0.1 wt%) is within the range of the reported values in the literature. In view of the fact that a very low level of alkali metal can significantly improve the catalytic performance of Co_3O_4 , it is not surprising that there exists variations in the rates reported for Co_3O_4 .

The promotional effect is not limited to Na but extends to all other alkali metals. However, the degree of promotion varies with the nature of the alkali metal and this variability is not related to the surface area of the catalyst. Li is the least effective promoter. It is a small cation and can easily diffuse into the bulk of Co_3O_4 as well as substitute for Co [17-19] to form $Li_xCo_{3-x}O_4$. These processes effectively reduce the

surface density of Li and lead to the smallest observed promotional effect.

It is interesting that there exists an optimal Na/Co ratio for the NO decomposition reaction. The difference in the catalytic activity of the Na/Co₃O₄ catalysts with different Na loadings is not due to the different surface areas. Surprisingly, there is no obvious correlation between the amount of oxygen desorbed in the oxygen TPD experiment and the catalytic activities of the Na/Co₃O₄ catalysts. The total amount of oxygen desorbed as well as the amount of oxygen desorbed in the temperature region of interest (>400°C) all increase with Na loadings. One possible reason for the decline in activity at high Na loadings is the formation of a β -Na_{0.6}CoO₂ phase which was detected with XRD (Fig. 5) at high Na loadings. If this phase is inactive in NO decomposition, its presence would affect the overall catalytic activity. However, the existence of an optimal Na/Co ratio may best be understood with respect to the manner that Na affects the catalytic activity and will be discussed in detail in a proposed scheme later on.

 Na/ZrO_2 has a very low activity compared with Na/Co_3O_4 , whether compared on the basis of the amount of Na or the weight of catalyst. It has been reported that sodium oxide reacts with NO_2 to form $NaNO_3$. The subsequent thermal decomposition of the nitrate yields N_2 [20]. Thus, a possible scheme for the reaction over Na/Co_3O_4 is that NO is oxidized to NO_2 over Co_3O_4 , and the latter reacts with Na_2O_2 to form sodium nitrate. However, a significant role for this scheme can be ruled out because the NO_2 decomposition rate is much lower than the NO decomposition rate at all temperatures over Na(0.015) catalyst (Table 3), and Na/ZrO_2 is much less active (Table 1).

From these results, it is apparent that both Na and Co_3O_4 are necessary for the enhanced rate of NO decomposition over Na/Co₃O₄ relative to Co_3O_4 . A possible mechanism for the synergistic effect between Na and Co is suggested by the ¹⁵NO TPD experiments. In addition to the desorption features associated with Co_3O_4 , the NO TPD profile of Na(0.015) sample shows new desorption peaks of O_2 , NO and N_2 in the 500–600°C region. The O_2 and NO peaks are much more intense than the N₂ peak, and their peak maxima are slightly displaced from one another, being the lowest for O_2 and the highest for N₂. Thus, these three species are not formed from the same concerted

reaction step. The following scheme can be used to explain the high temperature features:

$$2\text{Co}^{3+}\text{O}^{-} \rightarrow 2\text{Co}^{2+} + \text{O}_2$$

$$2\text{Co}^{2+} + 2\text{NO} \rightarrow 2\text{Co}^{3+}\text{O}^{-} + \text{N}_{2}$$

$$2\text{Co}^{3+}\text{O}^{-} + \text{Na}_2\text{O}_2 + 2\text{NO} \rightleftharpoons 2\text{Co}^{2+} + 2\text{NaNO}_3$$
 (4)

$$2NaNO_3 \rightleftharpoons Na_2O_2 + 2NO + O_2$$
 (high temperature), (5)

$$2\text{Co}^{2+} + 2\text{NO} \rightarrow 2\text{Co}^{2+} + \text{N}_2 + \text{O}_2$$

$$2\text{Co}^{2+} + \text{O}_2 \rightarrow 2\text{Co}^{3+}\text{O}^-$$
 (7)

In this mechanism, oxygen is desorbed from the surface Co³⁺ to produce Co²⁺ (Eq. (2)) at temperatures higher than about 350°C (the O₂ desorption peak for Co₃O₄, Fig. 7(a)). Thus, reduction of cobalt occurs during the high temperature pretreatment of the sample in He. Exposure of the sample to NO at room temperature reoxidizes the Co^{2+} to Co^{3+} (Eq. (3)). The oxygen remains adsorbed on Co³⁺ site but N₂ was desorbed immediately and purged out by He. The N₂ evolved was not monitored in the TPD experiment, but its formation was verified with GC in a separate experiment where NO was pulsed at room temperature over a sample pretreated in the same manner as the TPD experiment. The formation of Co³⁺O⁻ can be accomplished if the sample is pretreated in O2 instead of He. Indeed, the TPD profile of such a sample is similar to those shown, except for the lower amount of desorbed NO and N2 relative to O2 in the high temperature desorption region.

NO also is adsorbed on $\mathrm{Co^{3+}}$ at room temperature and desorbed at 200–250°C. At the same time, if Na is present, the reaction of $\mathrm{Co^{3+}O^{-}}$ with $\mathrm{Na_2O_2}$ and NO can occur to form $\mathrm{NaNO_3}$ (Eq. (4)). The occurrence of this reaction reduces the surface concentration of $\mathrm{Co^{3+}O^{-}}$ and is manifested in the loss of the low temperature $\mathrm{O_2}$ desorption peak (compare Fig. 7(a) and (b)). This is also an activated process and proceeds more rapidly when the exposure of NO is at elevated temperature (compare Fig. 7(b) and (c)).

When the sample is heated above 400° C, decomposition of NaNO₃ occurs (Eq. (5)). Both O₂ and NO are evolved. The latter is further decomposed on the

 Co^{2+} to form O_2 and N_2 . The delay of the NO peak maximum relative to the O_2 peak is probably due to chromatographic effect as a result of readsorption on the catalyst surface. Since N_2 is formed from NO decomposition (Eq. (6)), its evolution lags behind that of NO. Since only a minor fraction of desorbed NO decomposes, the amount of O_2 formed is small and appears in the tail of the much larger O_2 desorption peak.

This reaction scheme can apply to the catalytic NO decomposition reaction. The formation of NaNO₃ was detected by XRD on samples with high Na loadings after reaction. Most likely, its concentration on the catalyst surface is determined by the gas phase NO and O_2 concentrations, and possibly, its decomposition rate is suppressed by high O_2 concentrations. The suppression of NaNO₃ decomposition and adsorption of O_2 on Co^{2+} at the reaction temperature are some processes that contribute to the observed negative effect of O_2 on NO decomposition. It should be noted that in this mechanism, the role of Na is depicted in reactions (4) and (5). The sum of these two reactions is the desorption of O_2 from $Co^{3+}O^-$ to form Co^{2+} .

5. Conclusions

Alkali metals, in particular Na, have significant promotional effect on $\mathrm{Co_3O_4}$ for the NO decomposition reaction. A proposed reaction scheme suggests that the formation and decomposition of NaNO₃ facilitates the formation of the catalytic active site of $\mathrm{Co^{2+}}$. Thus, Na and cobalt have synergistic effect for the NO decomposition reaction. On the weight basis, Na(0.015) is among the most active NO decomposition catalysts known, although its activity at 550°C is still 10 times lower than that of Cu-ZSM-5 at 500°C. However, its activity continues to increase with increasing temperature up to 650°C, whereas the activity of Cu-ZSM-5 declines at higher temperatures. Thus, the Na/Co₃O₄ system appears to be worthy of further investigation.

Acknowledgements

This work was supported by the Petroleum Research Fund (PRF# 30177-AC5).

References

- M. Iwamoto, H. Hamada, Catal. Today 10 (1991) 57 references therein.
- [2] E.R.S. Winter, J. Catal. 22 (1971) 158.
- [3] A. Amirnazmi, J.E. Benson, M. Boudart, J. Catal. 30 (1973) 55.
- [4] B.A. Sazonov, V.V. Popovskii, G.K. Boreskov, Kinet. Catal. 9 (1968) 255.
- [5] M. Iwamoto, H. Yahiro, Y. Mine, S. Kagawa, Chem. Lett. (1989) 213.
- [6] M. Iwamoto, H. Yahiro, N. Mizuno, W.-X. Zhang, Y. Mine, H. Furukawa, S. Kagawa, J. Phys. Chem. 96 (1992) 9360.
- [7] J. Valyon, W.K. Hall, J. Phys. Chem. 97 (1993) 7054.
- [8] J. Sarkany, J.L. d'Itri, W.M.H. Sachtler, Catal. Lett. 16 (1992) 241.
- [9] K.C.C. Kharas, Appl. Catal. B. 2 (1993) 207.
- [10] S. Xie, G. Mestl, M.P. Rosynek, J.H. Lunsford, Paper Presented in the 15th North American Catalysis Society Meeting, Chicago, 1997.

- [11] S.S.C. Chuang, C.-D. Tan, J. Phys. Chem. B 101 (1997) 3000.
- [12] G.K. Boreskov, Discuss. Faraday Soc. 41 (1966) 263.
- [13] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, Chem. Lett. (1990) 1069.
- [14] T. Yamashita, A. Vannice, J. Catal. 163 (1996) 158.
- [15] P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross, Appl. Catal. 71 (1991) 363.
- [16] Y. Li, W.K. Hall, J. Phys. Chem. 94 (1990) 6145.
- [17] M.M. Thackeray, S.D. Baker, K.T. Adendorff, J.B. Goodenough, Solid State Ionics 17 (1985) 175.
- [18] R. Stoyanov, E. Zhecheva, S. Angelov, Materials Chem. Phys. 26 (1990) 239.
- [19] G.A. El-Shobaky, N.M. Ghoneim, I.M. Morsi, Thermochimica Acta 70 (1983) 325.
- [20] J.W. Hightower, D.A. Leirsburg, in: R.L. Klimisch, J.G. Larson (Eds.), The Catalytic Chemistry of Nitrogen Oxides, Plenum Press, New York, 1975, p. 63.
- [21] M. Shelef, K. Otto, H. Gandhi, Atmos. Environ. 3 (1969) 107.